New Improved Multi-Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem in Multi-Access Edge Computing

نویسندگان

چکیده

Abstract Computational offloading allows lightweight battery-operated devices such as IoT gadgets and mobile equipment to send computation tasks nearby edge servers be completed, which is a challenging problem in the multi-access computing (MEC) environment. Numerous conflicting objectives exist this problem; for example, execution time, energy consumption, cost should all optimized simultaneously. Furthermore, an application that consists of dependent another important issue cannot neglected while addressing problem. Recent methods are single objective, computationally expensive, or ignore task dependency. As result, we propose improved Gorilla Troops Algorithm (IGTA) offload MEC environments with three objectives: 1-Minimizing latency application, 2-energy consumption light devices, 3-the used resources. it supposed each supports many charge levels provide more flexibility system. Additionally, have extended operation standard (GTO) by adopting customized crossover improve its search strategy. A Max-To-Min (MTM) load-balancing strategy was also implemented IGTA operation. Relative GTO, has reduced 33%, 93%, usage 34.5%. We compared other Optimizers problem, results showed superiority IGTA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

An algorithm for multi-objective job shop scheduling problem

Scheduling for job shop is very important in both fields of production management and combinatorial op-timization. However, it is quite difficult to achieve an optimal solution to this problem with traditional opti-mization approaches owing to the high computational complexity. The combination of several optimization criteria induces additional complexity and new problems. In this paper, we pro...

متن کامل

Multi-Objective Optimisation for Information Access Tasks

Information access tasks involve setting a large number of model parameters (such as term weighting functions or the particular terms from the document collection to use in the model); in addition, information access tasks frequently attempt to satisfy multiple competing objectives, such as precision and recall. We investigate the use of multi-objective evolutionary algorithms for finding model...

متن کامل

An Improved Multi-objective Evolutionary Algorithm for Multi- Objective 0/1 Knapsack Problem

To further enhance the distribution uniformity and extensiveness of the solution sets and to ensure effective convergence of the solution sets to the Pareto front, we proposed a MOEA approach based on a clustering mechanism. We named this approach improved multi-objective evolutionary algorithm (LMOEA). This algorithm uses a clustering technology to compute and maintain the distribution and div...

متن کامل

A New Method For Solving Linear Bilevel Multi-Objective Multi-Follower Programming Problem

Linear bilevel programming is a decision making problem with a two-level decentralized organization. The leader is in the upper level and the follower, in the lower level. This study addresses linear bilevel multi-objective multi-follower programming (LB-MOMFP) problem, a special case of linear bilevel programming problems with one leader and multiple followers where each decision maker has sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Grid Computing

سال: 2023

ISSN: ['1572-9184', '1570-7873']

DOI: https://doi.org/10.1007/s10723-023-09656-z